
Restart-Based Fault-Tolerance:
System Design and Schedulability Analysis

Fardin Abdi, Renato Mancuso, Rohan Tabish, Marco Caccamo
Department of Computer Science, University of Illinois at Urbana-Champaign, USA

{abditag2, rmancus2, rtabish, mcaccamo}@illinois.edu

Abstract—Embedded systems in safety-critical environments are
continuously required to deliver more performance and functional-
ity, while expected to provide verified safety guarantees. Nonethe-
less, platform-wide software verification (required for safety) is
often expensive. Therefore, design methods that enable utilization
of components such as real-time operating systems (RTOS), with-
out requiring their correctness to guarantee safety, is necessary.

In this paper, we propose a design approach to deploy safe-by-
design embedded systems. To attain this goal, we rely on a small
core of verified software to handle faults in applications and RTOS
and recover from them while ensuring that timing constraints of
safety-critical tasks are always satisfied. Faults are detected by
monitoring the application timing and fault-recovery is achieved
via full platform restart and software reload, enabled by the short
restart time of embedded systems. Schedulability analysis is used
to ensure that the timing constraints of critical plant control tasks
are always satisfied in spite of faults and consequent restarts. We
derive schedulability results for four restart-tolerant task models.
We use a simulator to evaluate and compare the performance of
the considered scheduling models.

I. INTRODUCTION

Embedded controllers with smart capabilities are being in-
creasingly used to implement safety-critical cyber-physical sys-
tems (SC-CPS). In fact, modern medical devices, avionic and
automotive systems, to name a few, are required to deliver
increasingly high performance without trading off in robustness
and assurance. Unfortunately, satisfying the increasing demand
for smart capabilities and high performance means deploying in-
creasingly complex systems. Even seemingly simple embedded
control systems often contain a multitasking real-time kernel,
support networking, utilize open source libraries [1], and a
number of specialized hardware components (GPUs, DSPs,
DMAs, etc.). As systems increase in complexity, however, the
cost of formally verifying their correctness can easily explode.

Testing alone is insufficient to guarantee the correctness of
safety-critical systems, and unverified software may violate
system safety in multiple ways, for instance: (i) the control
application may contain unsafe logic that guides the system
towards hazardous states; (ii) the logic may be correct but
incorrectly implemented thereby creating unsafe commands at
runtime (application-level faults); (iii) even with logically safe,
correctly implemented control applications, faults in underlying
software layers (e.g. RTOS and device drivers) can prevent
the correct execution of the controller and jeopardize system
safety (system-level faults). Due to the limited feasibility and
high cost of platform-wide formal verification, we take a differ-
ent approach. Specifically, we propose a software/hardware co-
design methodology to deploy SC-CPS that (i) provide strong
safety guarantees; and (ii) can utilize unverified software com-
ponents to implement complex safety-critical functionalities.

Our approach relies on a key observation: by performing
careful boot-sequence optimization, many embedded platforms
and RTOS utilized in automotive industry, avionics, and
manufacturing can be entirely restarted within a very short
period of time. Restarting a computing system and reloading a

fresh image of all the software (i.e., RTOS, and applications)
from a read-only source appears to be an effective approach to
recover from unexpected faults. Thus, we propose the following:
as soon as a fault that disrupts the execution of critical
components is detected, the entire system is restarted. After a
restart, all the safety-critical applications that were impacted
by the restart are re-executed. If restart and re-execution of
critical tasks can be performed fast enough, i.e. such that
timing constraints are always met in spite of task re-executions,
the physical system will remain oblivious to and will not be
impacted by the occurrence of faults.

The effectiveness of the proposed restart-based recovery
relies on timely detection of faults to trigger a restart.
Since detecting logical faults in complex control applications
can be challenging, we utilize Simplex Architecture [2]–[4]
to construct control software. Under Simplex, each control
application is divided into three tasks; safety controller, complex
controller, and decision module. And, safety of the system relies
solely on timely execution of the safety controller tasks. From a
scheduling perspective, safety is guaranteed if safety controller
tasks have enough CPU cycles to re-execute and finish before
their deadlines in spite of restarts. In this paper, we analyze
the conditions for a periodic task set to be schedulable in the
presence of restarts and re-executions. We assume that when a
restart occurs, the task instance executing on the CPU and any
of the tasks that were preempted before their completion will
need to re-execute after the restart. In particular, we make the
following contributions:
• We propose a Simplex Architecture that can be recovered

via restarts and implemented on a single processing unit;
• We derive the response time analysis under fixed-priority

with fully preemptive and fully non-preemptive disciplines
in presence of restart-based recovery and discuss pros and
cons of each one;

• We propose response time analysis of fixed-priority
scheduling in presence of restarts for tasks with preemption
thresholds [5] and non-preemptive ending intervals [6] to
improve feasibility of task sets;

II. BACKGROUND ON SIMPLEX DESIGN

Our proposed approach is designed for the control tasks
that are constructed following Simplex verified design guide-
lines [2]–[4]. In the following, we review Simplex design
concepts which are essential for understanding the methodology
of this paper. The goal of original Simplex approach is to design
controllers, such that the faults in controller software do not
cause the physical plant to violate its safety conditions.

Definition States of the physical plant that do not violate any
of the safety conditions are referred to as admissible states. The
physical subsystem is assumed safe as long it is in an admissible
state. Likewise those that violate the constraints are referred to
as inadmissible states.

Under Simplex Architecture, each controlled physical pro-
cess/component requires a safety controller, a complex con-978-1-5386-1898-1/17/$31.00 c© 2017 IEEE

troller, and a decision module. In the following, we define
properties of each component.

Definition Safety Controller is a controller for which a subset
of the admissible states called recoverable states exists with
the following property; If the safety controller starts controlling
the plant from one of those states, all future states will remain
admissible. The set of recoverable states is denoted byR. Safety
controller is formally verified i.e., it does not contain logical or
implementation errors.

Definition Complex Controller is the main controller task of
the system that drives the plant towards mission set points.
However, it is unverified i.e., it may contain unsafe logic or
implementation bugs. As a result, it may generate commands
that force the plant into inadmissible states.

Definition Decision Module includes a switching logic that can
determine if the physical plant will remain safe (stay within the
admissible states) if the control output of complex controller is
applied to it.

There are multiple approaches to design a verified safety
controller and decision module. The first proposed way is based
on solving linear matrix inequalities [7], which has been used
to design Simplex systems as complicated as automated landing
maneuvers for an F-16 [8]. According to this approach, safety
controller is designed by approximating the system with linear
dynamics in the form: ẋ = Ax + Bu, for state vector x and
input vector u. In this approach, safety constraints are expressed
as linear constraints in the form of linear matrix inequalities.
These constraints, along with the linear dynamics for the
system, are the inputs to a convex optimization problem that
produces both linear proportional controller gains K, as well as
a positive-definite matrix P . The resulting linear-state feedback
controller, u = Kx, yields closed-loop dynamics in the form of
ẋ = (A+BK)x. Given a state x, when the input Kx is used, the
P matrix defines a Lyapunov potential function (xTPx) with
a negative-definite derivative. As a result, the stability of the
physical plant is guaranteed using Lyapunov’s direct or indirect
methods. Furthermore, matrix P defines an ellipsoid in the state
space where all safety constraints are satisfied when xTPx < 1.
If sensors’ and actuators’ saturation points were provided as
constraints, the states inside the ellipsoid can be reached using
control commands within the sensor/actuator limits.

In this way, when the gains K define the safety controller, the
ellipsoid of states xTPx < 1 is the set of recoverable states R.
This ellipsoid is used to determine the proper switching logic
of the decision module. As long as the system remains inside
the ellipsoid, any unverified, complex controller can be used. If
the state approaches the boundary of the ellipsoid, control can
be switched to the safety controller which will drive the system
towards the equilibrium point where xTPx = 0.

An alternative approach for constructing a verified safety
controller and decision module is proposed in [9]. Here, safety
controller is constructed similar to the above approach [7].
However, a novel switching logic is proposed for decision
module to decide about the safety of complex controller
commands. Intuitively, this check is examining what happens
if the complex controller is used for a single control interval
of time, and then the safety controller is used thereafter. If
the reachable states contain an inadmissible state (either before
the switch or after), then the complex controller cannot be
used for one more control interval. Assuming the system starts
in a recoverable state, this guarantees it will remain in the
recoverable set for all time.

A system that adheres to this architecture is guaranteed

to remain safe only if safety controller and decision module
execute correctly. In this way, the safety premise is valid only if
safety controller and decision module execute in every control
cycle. Original Simplex design, only protects the plant from
faults in the complex controller. For instance, if a fault in the
RTOS crashes the safety controller or decision module, safety
of the physical plant will get violated.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section we formalize the considered system and
task model, and discuss the assumptions under which our
methodology is applicable.

A. Periodic Tasks
We consider a task set T composed of n periodic tasks

τ1 . . . τn executed on a uniprocessor under fixed priority
scheduling. Each task τi is assigned a priority level πi. We
will implicitly index tasks in decreasing priority order, i.e.,,
τi has higher priority than τk if i < k. Each periodic task
τi is expressed as a tuple (Ci, Ti, Di, φi), where Ci is the
worst-case execution time (WCET), Ti is the period, Di is the
relative deadline of each task instance, and φi is the phase (the
release time of the first instance). The following relation holds:
Ci ≤ Di ≤ Ti. Whenever Di = Ti and φi = 0, we simply
express tasks parameters as (Ci, Ti). Each instance of a periodic
task is called job and τi,k denotes the k-th job of task τi.
Finally, hp(πi) and lp(πi) refer to the set of tasks with higher
or lower priority than πi i.e., hp(πi) = {τj | πi < πj} and
lp(πi) = {τj | πi > πj}. We indicate with Tr the minimum
inter-arrival time of faults and consequent restarts; while Cr
refers to the time required to restart the system.

B. Critical and Non-Critical Workload
It is common practice to execute multiple controllers for

different processes of physical plant on a single processing
unit. In this work, we use the Simplex Architecture [2]–[4] to
implement each controller. As a result, three periodic tasks are
associated with every controller: (i) a safety controller (SC)
task, (ii) a complex controller (CC) task, and (iii) a decision
module (DM) task. In typical designs, the three tasks that
compose the same controller have the same period, deadline,
and release time.

Remark 1. SC’s control command is sent to the actuator buffer
immediately before the termination of that job instance. Hence,
the timely execution of SC tasks is necessary and sufficient for
the safety of the physical plant.

As a result, out of the three tasks, SC must execute first and
write its output to the actuator command buffer. Conversely,
DM needs to execute last, after the output of CC is available,
to decide if it is safe to replace SC’s command which is
already in the actuator buffer. Hence, the priorities of the
controller tasks need to be in the following order1: π(DM) <
π(CC) < π(SC). Note that, the precedence constraint that SC,
CC and DM tasks must execute in this order can be enforced
through the proposed priority ordering if self-suspension and
blocking on resources are excluded and if the scheduler is
work-conserving. We consider fixed priority scheduling, which
is work-conserving and we assume SC, CC and DM tasks do not
self-suspend. Moreover, tasks controlling different components
are independent; SC, CC and DM tasks for the same component
share sensors and actuator channels. Sensors are read-only
resources, do not require locking/synchronization and therefore
cannot cause blocking. A given SC task, may only share actuator

1We assume enough priority levels to assign distinct priorities.

channels with the corresponding DM task. However, SC jobs
execute before DM jobs and do not self-suspend, hence DM
cannot acquire a resource before SC has finished its execution.

The set of all the SC tasks on the system is called critical
workload. All the CC and DM tasks are referred as non-critical
workload. Safety is guaranteed if and only if all the critical
tasks complete before their deadlines. Whereas, execution of
non-critical tasks is not crucial for safety; these tasks are said
to be mission-critical but not safety-critical. We assume that the
first nc tasks of T are critical. Notice that with this indexing
strategy, any critical task has a higher priority than any non-
critical task.
C. Fault Model

In this paper, we consider two types of fault for the system;
application-level faults and system-level faults. We make the
following assumptions about the faults that our system safely
handles:

A1 The original image of the system software is stored
on a read-only memory unit (e.g.,, E2PROM). This
content is unmodifiable at runtime.

A2 Application faults may only occur in the unverified
workload (i.e., all the application-level processes on
the system except SC and DM tasks).

A3 SC and DM tasks are independently verified and fault-
free. They might, however, fail silently (no output is
generated) due to faults in software layers or other
applications on which they depend.

A4 We only consider system- and application-level faults
that cause SC and DM tasks to fail silently but do not
change their logic or alter their output.

A5 Faults do not alter sensor readings.
A6 Once SC or CC tasks have send their outputs to the

actuators, the output is unaffected by system restart.
As such, a task does not need to be re-executed if it
has completed correctly before a restart.

A7 Re-executing a task even if it has completed correctly
does not negatively impact system safety.

A8 Monitoring and initializer tasks (Section IV) are
independently verified and fault-free. We assume that
system faults can only cause silent failures in these
tasks (no output or correct output).

A9 Tr is larger than the least common multiple (hyper-
period2) of critical tasks, i.e. Tr > LCM{Tk | k ≤ nc}

D. Scheduler State Preservation and Absolute Time
In order to know what tasks were preempted, executing, or

completed after a restart occurs, it is fundamental to carry
a minimum amount of data across restarts. As such, our
architecture requires the existence of a small block of non-
volatile memory (NVM). We also require the presence of a
monotonic clock unit (CLK) as an external device. CLK is
used to derive the absolute time after a system restart. Since
we assume periodic tasks, the information provided by CLK
is enough to determine the last release time of each task.
Whenever a critical task is completed, the completion timestamp
obtained from CLK is written to NVM, overwriting the previous
value for the same task. We assume that a timestamp update in
NVM write can be performed in a transactional manner.

E. Recovery Model
The recovery action we assume in this paper is to restart the

entire system, reload all the software (RTOS and applications)
from a read-only storage unit, and re-execute all the jobs that

2Length of the hyper-period can be significantly reduced if the control tasks
have harmonic periods.

Fig. 1: Example of fully preemptive system with 3 tasks τ1 =
(1, 3); τ2 = (2, 8); τ3 = (4, 22), and restart at t = 10 − ε (Cr = 0).
The taskset is schedulable without restarts, however, restart and task
re-execution causes a deadline miss at t = 22.

were released but not completed at the time of restart. The
priority of a re-executing instance is the same as the priority
of the original job. Within Cr time units, the system (RTOS
and applications) reloads from a read-only image, and re-
execution is initiated as needed. Figure 1 depicts how restart
and task re-execution affect the scheduling of 3 real-time tasks
(τ1, τ2, andτ3). When the restart happens at t = 10− ε, τ1 was
still running. Moreover, τ2 and τ3 were preempted at time t = 9
and t = 8, respectively. Hence all the three task will need to be
re-executed after the restart.

System restart is triggered only after a fault is detected. The
following definition of fault is used throughout this paper:

Critical Fault: any system misbehavior that leads to a non-
timely execution of any of the critical tasks.

It follows that (i) the absence of critical faults guarantees
that every critical task completes on time; that (ii) the timely
completion of all the critical tasks ensures system safety by
Assumptions A3-A7; and that (iii) being able to detect all
critical faults and re-execute critical tasks by their deadline is
enough to ensure timely completion of critical tasks in spite of
restarts. We discuss critical fault detection in Section IV; and
we analyze system schedulability in spite of critical faults in
Section V and VI. Since handling critical faults is necessary
and sufficient (Remark 1) for safety, in the rest of this paper,
the term fault is used to refer to critical faults.

F. RBR-Feasibility
A task set T is said to be feasible under restart based

recovery (RBR-Feasible) if the following two conditions are
satisfied; (i) there exists a schedule such that all jobs of all
the critical tasks, or their potential re-executions, can complete
successfully before their respective deadlines, even in the
presence of a system-wide restart, occurring at any arbitrary
time during execution. (ii) All jobs, including instances of non-
critical tasks, can complete before their deadlines when no
restart is performed.

IV. FAULT DETECTION AND TASK RE-EXECUTION

As described in the previous section, a successful fault-
detection approach must be able to detect any fault before the
deadline of a critical task is missed, and to trigger the recovery
procedure. Another key requirement is being able to correctly
re-execute critical jobs that were affected by a restart.

Fault detection with watchdog (WD) timer: to explain the
detection mechanism, we rely on the concept of ideal worst-
case response time, i.e. the worst-case response time of a task
when there are no restarts (and no re-executions) in the system.

We use R̂i to denote the ideal worst-case response time of τi.
R̂i can be derived using traditional response-time analysis, or
with the analysis proposed in Section V and VI by imposing
all the overhead terms Oxy = 0.

If no faults occur in the system, every instance of τi is
expected to finish its execution within at most R̂i time units
after its arrival time. This can be checked at runtime with
a monitoring task. Recall that each critical job records its
completion timestamp tcompi to NVM. The monitoring task
checks the latest timestamp for τi at time instants kTi + R̂i.
If tcompi < kTi it means that τi has not completed by its ideal
worst-case response time. Hence, a restart needs to be triggered.
A single WD can be used to always ensure a system reset if any
of the critical tasks does not complete by its ideal worst-case
response time. The following steps are performed:

1) Determine the next checkpoint instant tnext and checked
critical task τi as follows:

tnext = min
i≤nc

(
b(t− φi)/TicTi + φi + R̂i

)
. (1)

In other words, tnext captures the earliest instant of time
that corresponds to the elapsing of the ideal worst-case
response time of some critical task τi;

2) Set the WD to restart the system after t − tnext + ε time
units;

3) Terminate and set wake-up time at tnext;
4) At wake-up, check if τi completed correctly: if tcompi

obtained from NVM satisfies tcompi ≥ b(t−φi)/TicTi+φi,
then acknowledge the WD so that it does not trigger a reset.
Otherwise, do nothing, causing a WD-induced reset after
ε time units.

5) Continue from Step 1 above.
Notice that this simple solution utilizes only one WD timer,

and handles all the silent failures. The advantage of using
hardware WD timers is that if any faults in the OS or other
applications, prevent the time monitor task from execution, the
WD which is already set, will expire and restart the system.

To determine which tasks to execute after a restart, we
propose the following. Immediately after the reboot completes,
a initializer task calculates the latest release time of each task τi
using b(t−φi)/TicTi+φi where t is the current time retrieved
from CLK. Next, it retrieves the last recorded completion time
of the task, tcompi , from NVM. If tcompi < b(t−φi)/TicTi+φi,
then the task needs to be executed, and is added to the list of
ready tasks. It is possible that a task completed its execution
prior to the restart, but was not able to record the completion
time due to the restart. In this case, the task will be executed
again which does not impact the safety due to Assumption A7.

V. RBR-FEASIBILITY ANALYSIS

As mentioned in Section IV, re-execution of jobs impacted
by a restart must not cause any other job to miss a deadline.
Also, re-executed jobs need to meet their deadlines as well. The
goal of this section is to present a set of sufficient conditions
to reason about the feasibility of a given task set T in presence
of restarts (RBR-feasibility). In particular, in Sections V-A
and V-B, we present a methodology that provides a sufficient
condition for exact RBR-Feasibility analysis of preemptive and
non-preemptive task sets.

Definition: Length of level-i preemption chain at time t is
defined as sum of the executed portions of all the tasks that are
in the preempted or running state, and have a priority greater
than or equal to πi at t. Longest level-i preemption chain is
the preemption chain that has the longest length over all the
possible level-i preemption chains.

For instance, consider a fully preemptive task set with four
tasks; C1 = 1, T1 = 5, C2 = 3, T2 = 10, C3 = 2, T3 = 12,
C4 = 4, T3 = 15, and π4 < π3 < π2 < π1. For this task set,
the longest level-3 and level-4 preemption chains are 6 and 10,
respectively.

A. Fully Preemptive Task Set

Under fully preemptive scheme, as soon as a higher priority
task is ready, it preempts any lower priority tasks running on
the processor. To calculate the worst-case response time of task
τi, we have to consider the case where the restart incurs the
longest delay on finishing time of the job. For a fully preemptive
task set, this occurs when every task τk for k ∈ {2, . . . , i}
is preempted immediately prior to its completion by τk−1 and
system restarts right before the completion of τ1. In other words,
when tasks τ1 to τi form the longest level-i preemption chain.
An example of this case is depicted in Figure 1. In this case,
the restart and consequent re-execution causes a deadline miss
at t = 22. The example uses only integer numbers for task
parameters, hence tasks can be preempted only up to 1 unit of
time before their completion. In the rest of the paper, we discuss
our result assuming that tasks’ WCETs are real numbers.

Theorem 1 provides RBR-feasibility conditions for a fully
preemptive task set T , under fixed priority scheduling.

Theorem 1. A set of preemptive periodic tasks T is RBR-
Feasible under fixed priority algorithm if the response time
Ri of each task τi satisfies the condition: ∀τi ∈ T , Ri ≤ Di.
Ri is obtained for the smallest value of k for which we have
R

(k+1)
i = R

(k)
i .

R
(k+1)
i = Ci +

∑
τj∈hp(πi)

⌈
R

(k)
i

Tj

⌉
Cj +Opi (2)

where the restart overhead Opi on response time is

Opi =

{
Cr +

∑
τj∈hp(πi)∪{τi} Cj i ≤ nc

0 i > nc
(3)

Proof. First, note that Equation 2 without the overhead term
Opi , corresponds to the classic response time of a task under
fully preemptive fixed priority scheduling [10]. The additional
overhead term represents the worst-case interference on the task
instance under analysis introduced by restart time and the re-
execution of the preempted tasks. We need to show that the
overhead term can be computed using Equation 3. Consider the
scenario in which every task τk is preempted by τk−1 after
executing for δi time units where k ∈ {2, ..., i}. And, a restart
occurs after τ1 executed for δ1 time units. Due to the restart,
all the tasks have to re-execute and the earliest time τi can
finish its execution is Cr + δi+ ...+ δ1 +Ci+ ...+C1. Hence,
it is obvious that the later each preemption or the restart in
τ1 occurs, the more delay it creates for τi. Once a task has
completed, it no longer needs to be re-executed. Therefore,
the maximum delay of each task is felt immediately prior to
the task’s completion instant. Thus, the overhead is maximized
when each τk is preempted by τk−1 for k ∈ {2, .., i} and restart
occurs immediately before the end of τ1.

As seen in this section, the worst-case overhead of restart-
based recovery in fully preemptive setting occurs when system
restarts at the end of longest preemption chain. Therefore,
to reduce the overhead of restarting, length of the longest
preemption chain must be reduced. In order to reduce this
effect we investigate the non-preemptive setting in the following
section.

B. Fully Non-Preemptive Task set
Under this model, jobs are not preempted until their execution

terminates. At every termination point, the scheduler selects the
task with the highest priority amongst all the ready tasks to
execute. The main advantage of non-preemptive task set is that
at most one task instance can be affected by restart at any instant
of time.

Authors in [11] showed that in non-preemptive scheduling,
the largest response time of a task does not necessarily occur
in the first job after the critical instant. In some cases, the
high-priority jobs activated during the non-preemptive execution
of τi’s first instance are pushed ahead to successive jobs,
which then may experience a higher interference. Due to this
phenomenon, the response time analysis for a task cannot be
limited to its first job, activated at the critical instant, as done
in preemptive scheduling, but it must be performed for multiple
jobs, until the processor finishes executing tasks with priority
higher than or equal to πi. Hence, the response time of a task
needs to be computed within the longest Level-i Active Period,
defined as follows [12], [13].

Definition: The Level-i Active Period Li is an interval [a, b)
such that the amount of processing that still needs to be
performed at time t due to jobs with priority higher than or equal
to πi, released strictly before t, is positive for all t ∈ (a, b) and
null in a and b. It can be computed using the following iterative
relation:

L
(q)
i = Bi + Ci +

∑
j∈hp(πi)

dL(q−1)
i /TjeCj +Onpi (4)

Here, Onpi is the maximum overhead of restart on the response
time of a task. In the following we describe how to calculate this
value. Li is the smallest value for which L

(q)
i = L

(q−1)
i . This

indicates that the response time of task τi must be computed
for all jobs τi,k with k ∈ [1,Ki] where Ki = dLi/Tie.

Theorem 2 describes the sufficient conditions under which a
fault and the subsequent restart do not compromise the timely
execution of the critical workload under fully non-preemptive
scheduling. Notice that, as mentioned earlier, it is assumed that
the schedule is resumed with the highest priority active job after
restart.

Theorem 2. A set of non-preemptive periodic tasks is RBR-
feasible under fixed-priority if the response time Ri of each task
τi, calculated through following relation, satisfies the condition:
∀τi ∈ T ;Ri ≤ Di.

Ri = max
k∈[1,Ki]

{Fi,k − (k − 1)Ti} (5)

where Fi,k is the finishing time of job τi,k given by

Fi,k = Si,k + Ci (6)

Here, Si,k is the start time of job τi,k, obtained for the smallest
value that satisfies S(q+1)

i,k = S
(q)
i,k in the following relation

S
(k+1)
i,k = Bi +

∑
τj∈hp(πi)

(⌊
S
(k)
i,k

Tj

⌋
+ 1

)
Cj +Onpi (7)

In Equation 7, term Bi is the blocking from low priority tasks
and is calculated as Bi = maxτj∈lp(πi) {Cj}. The term Onpi
represents the overhead on task execution introduced by restarts
and is calculated as follows:

Onpi =

{
Cr +max {{Cj | j ∈ hp(πi)} ∪ Ci} i ≤ nc
0 i > nc

(8)

Proof. Equation 7 and 6, without the restart overhead term Onpi ,
are proposed in [12], [13] to calculate the worst-case start time
and response time of a task under non-preemptive setting.

We need to show that the overhead term can be computed
using Equation 8. Under non-preemptive discipline, restart only
impacts a single task executing on the CPU at the instant of
restart. There are two possible scenarios that may result in
the worst-case restart delay on finish time of task τi. First,
when τi is waiting for the higher priority tasks to finish their
execution, a restart can occur during the execution of one of the
higher priority tasks τj and delay the start time τi by Cr +Cj .
Alternatively, a restart can occur infinitesimal time prior to the
completion of τi and cause an overhead of Cr + Ci. Hence,
the worst-case delay due to a restart is caused by the task with
the longest execution time among the task itself and the tasks
with higher priority (Equation 8). The restart overhead is not
included in the response-time of non-critical tasks (Onpi = 0
for i > nc).

Fig. 2: Example of fully non-preemptive system with 3 tasks τ1 =
(1, 3); τ2 = (2, 8); τ3 = (4, 22), and restart at t = 5 − ε (Cr = 0).
Restart and task re-execution causes a deadline miss at t = 9.

Unfortunately, under non-preemptive scheduling, blocking
time due to low priority tasks, may cause higher priority tasks
with short deadlines to be non-schedulable. As a result, when
preemptions are disabled, there exist task sets with arbitrary low
utilization that despite having the lowest restart overhead, are
not RBR-Feasible. Figure 2 uses the same task parameters as
in Figure 1. The plot shows that the considered task system is
not schedulable under fully non-preemptive scheduling when a
restart is triggered at t = 5− ε.

VI. LIMITED PREEMPTIONS

In the previous section, we analyzed the RBR-Feasibility
of task sets under fully preemptive and fully non-preemptive
scheduling. Under full preemption, restarts can cause a sig-
nificant overhead because the longest preemption chain can
contains all the tasks. On the other hand, under non-preemptive
scheduling, the restart overhead is minimum. However, due to
additional blocking on higher priority tasks, some task sets, even
with low utilization, are not schedulable.

In this section we discuss two alternative models with
limited preemption. Limited preemption models are suitable
for restart-based recovery since they enable the necessary
preemptions for the schedulability of the task set, but avoid
many unnecessary preemptions that occur in fully preemptive
scheduling. Consequently, they induce lower restarting overhead
and exhibit higher schedulability.

A. Preemptive tasks with Non-Preemptive Ending
As seen in the previous sections, reducing the number

and length of preempted tasks in the longest preemption
chain, can reduce the overhead of restarting and increase the

RBR-Feasibility of task sets. On the other hand, preventing
preemptions entirely is not desirable since it can impact
feasibility of the high priority tasks with short deadlines. As
a result, we consider a hybrid preemption model in which, a
job once executed for longer than Ci−Qi time units, switches
to non-preemptive mode and continues to execute until its
termination point. Such a model allows a job that has mostly
completed to terminate, instead of being preempted by a higher
priority task. Qi is called the size of non-preemptive ending
interval of τi and Qi ≤ Ci. The model we utilize in this section,
is a special case of the model proposed in [6] which aims to
decrease the preemption overhead due to context switch in real-
time operating systems. In Figure 3, we consider a task set with
the same parameters as in Figure 1, where in addition task τ3
has a non-preemptive region of length Q3 = 1. The preemption
chain that caused the system in Figure 1 to be non-schedulable
cannot occur and the instance of the task becomes schedulable
under restarts. With the same setup, Figure 4 considers the case
when a reset occurs at t = 9− ε.

1) RBR-Feasibility Analysis: Theorem 3 provides the RBR-
feasibility conditions of a task-set with non-preemptive ending
intervals. In this theorem, Si,k represents the worst case start
time of the non-preemptive region of the re-executed instance of
job τi,k. Similarly, Fi,k is used to represent the worst-case finish
time. The arrival time of instance k of task τi,k is (k − 1)Ti.

Theorem 3. A set of periodic tasks T with non-preemptive
ending regions of length Qi, is RBR-Feasible under a fixed
priority algorithm if the worst-case response time Ri of each
task τi, calculated from Equation 9, satisfies the condition:
∀τi ∈ T , Ri ≤ Di.

Ri = max
k∈[1,Ki]

{Fi,k − (k − 1)Ti} (9)

where
Fi,k = Si,k +Qi (10)

and Si,k is obtained for the smallest value of q for which we
have S(q+1)

i,k = S
(q)
i,k in the following

S
(q+1)
i,k = Bi + (k − 1)Ci + Ci −Qi

+
∑

τj∈hp(τi)

(⌊
S
(q)
i,k

Tj

⌋
+ 1

)
Cj +Onpei (11)

Here, the term Bi is the blocking from low priority tasks and
is calculated by

Bi = max
τk∈lp(πi)

{Qk}. (12)

Onpei is the maximum overhead of the restart on the response
time and is calculated as follows:

Onpei =

{
Cr +WCWE(i) i ≤ nc
0 i > nc

(13)

whereWCWE(i) is the worst-case amount of the execution that
may be wasted due to the restarts. It is given by the following
where WCWE(1) = C1 and

WCWE(i) = Ci +max

(
0,WCWE(i− 1)−Qi

)
(14)

Ki in Equation 9 can be computed from Equation 4 by using
Onpei instead of Onpi .

Proof. Authors in [5] show that the worst-case response time
of task τi is the maximum difference between the worst case

Fig. 3: Example of system with 3 tasks τ1 = (1, 3); τ2 = (2, 8); τ3 =
(4, 22), where τ3 has a non-preemptive region of size Q3 = 1. Restart
occurs at t = 7− ε (Cr = 0). The task set is schedulable with restarts.

finish time and the arrival time of the jobs that arrive within the
level-i active period (Equation 9).

Hence, we must compute the worst-case finish time of job
τi,k in the presence of restarts. When a restart occurs during the
execution of τi,k or while it is in preempted state, τi,k needs
to re-execute. Therefore, the finish time of the τi,k is when
the re-executed instance completes. As a result, to obtain the
worst-case finish time of τi,k, we calculate the response time of
each instance when a restart with longest overhead has impacted
that instance. We break down the worst-case finish time of
τi,k into two intervals: the worst-case start time of the non-
preemptive region of the re-executed job and the length of the
non-preemptive region, Qi (Equation 10). Si,k in Equation 10,
is the worst-case start time of non-preemptive region of job τi,k
which can be iteratively obtained from Equation 11. Equation 11
is an extension of the start time computation from [13]. In
the presence of non-preemptive regions, an additional blocking
factor Bi must be considered for each task τi, equal to the
longest non-preemptive region of the lower priority tasks.
Therefore, the maximum blocking time that τi may experience
is Bi = maxτj∈lp(πi) {Qj}. Bi is added to the worst-case start
time of the task in Equation 11.

For a task τi with the non-preemptive region of size Qi,
there are two cases that may lead to the worst-case wasted time.
First case is when the system restarts immediately prior to the
completion of τi, in which case the wasted time is Ci. Second
case occurs when τi is preempted immediately before the non-
preemptive region begins (i.e., at Ci−Qi) by the higher priority
task τi−1. In this case, the wasted execution is Ci−Qi plus the
maximum amount of the execution of the higher priority tasks
that may be wasted due to the restarts (i.e., WCWE(i − 1)).
The worst-case wasted execution is the maximum of these two
values i.e.,WCWE(i) = max(Ci, Ci−Qi+WCWE(i−1)) =
Ci +max(0,WCWE(i − 1) − Qi). Similarly, WCWE(i − 1)
can be computed recursively.

2) Optimal Size of Non-Preemptive Regions: RBR-
Feasibility of a taskset depends on the choice of Qis for the
tasks. In this section, we present an approach to determine the
size of non-preemptive regions Qi for the tasks to maximize
the RBR-Feasibility of the task set.

First, we introduce the the notion of blocking tolerance of
a task βi. βi is the maximum time units that task τi may be
blocked by the lower priority tasks, while it can still meet its
deadline. Algorithm 1, uses binary search and the response time
analysis of task (from Theorem 3) to find βi for a task τi.

In Algorithm 1, Ri,Bi=middle is computed as described in
Theorem 3 (Equation 9), where instead of using the Bi from
Equation 12, the blocking time is set to the value of middle.

Fig. 4: Example of system with 3 tasks τ1 = (1, 3); τ2 = (2, 8); τ3 =
(4, 22), where τ3 has a non-preemptive region of size Q3 = 1. Restart
occurs at t = 9− ε (Cr = 0). The task set is schedulable with restarts.

Algorithm 1: Binary Search for Finding βi
FindBlockingTolerance(τi, T , Q1, ..., Qi)

start = 0; end = Ti /* Initialize the interval */
if Ri(start) > Ti then return τi Not Schedulable;
while end - start > ε do

middle = (start + end)/2
if Ri,Bi=middle > Ti then end = middle ;
else start = middle

end
return βi = start;

Note that, if Algorithm 1 cannot find a βi for task τi, this
task is not schedulable at all. This indicates that there is not
any selection of Qis that would make T RBR-Feasible.

Given that task τ1 has the highest priority, it may not be
preempted by any other task; hence we set Q1 = C1. The next
theorem shows how to drive optimal Qi for the rest of the tasks
in T . The results are optimal, meaning that if there is at least
one set of Qis under which T is RBR-Feasible, it will find
them.

Theorem 4. The optimal set of non-preemptive interval Qis of
tasks τi for 2 ≤ i ≤ n is given by:

Qi = min
{
min{βj | j ∈ hp(πi)}, Ci

}
(15)

assuming that βj ≥ 0 for j ∈ hp(πi).
Proof. Increasing the length of Qi for a task reduces the
response time in two ways. First, from Equation 11, increasing
Qi reduces the start time of the job Si,k which reduces the
finish time and consequently the response time of τi. Second,
from Equation 14, increasing Qi reduces the restart overhead
Onpei on the task and lower priority tasks which in turn reduces
the response time. Thus Qi may increase as much as possible
up to the worst-case execution time Ci; Qi ≤ Ci. However,
the choice of Qi must not make any of the higher priority tasks
unschedulable. As a result, Qi must be smaller than the smallest
blocking tolerance of all the tasks with higher priority than πi;
Qi ≤ min{βj |j ∈ hp(πi)}. Combining these two conditions
results in the relation of Equation 15.

B. Preemption Thresholds
In the previous section, we discussed non-preemptive endings

as a way to reduce the length of the longest preemption chain
and decrease the overhead of restarts. In this section, we discuss
an alternative approach to reduce the number of tasks in the
longest preemption chain and thus reduce the overhead of
restart-based recovery.

To achieve this goal, we use the notion of preemption
thresholds which has been proposed in [5]. According to this

Fig. 5: Example of system with 3 tasks τ1 = (1, 3); τ2 = (2, 8); τ3 =
(4, 22), where τ2 and τ3 have a preemption threshold of λ2 = 1 and
λ3 = 2, respectively. Restart occurs at t = 7 − ε (Cr = 0). In this
case, the task set remains schedulable.

Fig. 6: Example of system with 3 tasks τ1 = (1, 3); τ2 = (2, 8); τ3 =
(4, 22), where τ2 and τ3 have a preemption threshold of λ2 = 1 and
λ3 = 2, respectively. Restart occurs at t = 9 − ε (Cr = 0). The task
set is not schedulable.

model, each task τi is assigned a nominal priority πi and a
preemption threshold λi ≥ πi. In this case, τi can be preempted
by τh only if πh > λi. At activation time, priority of τi is set
to the nominal value πi. The nominal priority is maintained as
long as the task is kept in the ready queue. During this interval,
the execution of τi can be delayed by all tasks with priority
πh > πi, and by at most one lower priority task with threshold
λl ≥ πi. When all such tasks complete, τi is dispatched for
execution, and its priority is raised to λi. During execution, τi
can be preempted by tasks with priority πh > λi. When τi is
preempted, its priority is kept at λi.

Restarts may increase the response time of τi,k in one of two
ways; A restart may occur after the arrival of the job but before
it has started, delaying its start time Si,k. Alternatively, the
system can be restarted after the job has started. We use Opt,si
to denote the worst-case overhead of a restart that occurs before
the start time of a job in task sets with preemption thresholds.
And, Opt,fi is used to represent the worst-case overhead of a
restart that occurs after the start time of a job in task sets with
preemption thresholds.

In Figure 5, we consider a task set with the same parameters
as in Figure 1 where in addition τ2 and τ3 have a preemption
threshold equal to λ2 = 1 and λ3 = 2, respectively. This
assignment is effective to prevent a long preemption chain, and
the jobs do not miss their deadline when the restart occurs at
t = 7 − ε. Notice that, the task set is still not RBR-Feasible
since if the restart occurs at t = 9− ε, some job will miss the
deadline, as shown in Figure 6.

Theorem 5. For a task set with preemption thresholds under
fixed priority, the worst-case overhead of a restart that occurs

after the start of the job τi,k is Opt,fi = Cr+WCWE(i) where

WCWE(i) = Ci +max{WCWC(j) | τj ∈ hp(λi)} (16)

Here, WCWC(1) = C1.

Proof. After a job τi,k starts, its priority is raised to λi. In
this case, the restart will create the worst-case overhead if it
occurs at the end of longest preemption chain that includes τi
and any subset of the tasks with πh > λi. Equation 16 uses a
recursive relation to calculate the length of longest preemption
chain consisting of τi and all the tasks with πh > λi.

Theorem 6. For a task set with preemption thresholds under
fixed priority, a restart occurring before the start time of a job
τi,k, can cause the worst-case overhead of

Opt,si = Cr +max{WCWE(j) | τj ∈ hp(πi)} (17)

where WCWE(j) can be computed from Equation 16.

Proof. Start time of a task can be delayed by a restart
impacting any of the tasks with priority higher than πi.
Equation 17 recursively finds the longest possible preemption
chain consisting of any subset of tasks with πh > πi.

Due to the assumption of one fault per hyper-period, each
job may be impacted by at most one of Opt,fi or Opt,si , but not
both at the same time. Hence, we compute the finish time of
the task once assuming that the restart occurs before the start
time i.e., Opt,fi = 0, and another time assuming it occurs after
the start time i.e., Opt,si = 0. Finish time in these two cases is
referred respectively by F si,k (restart before the start time) and
F fi,k (restart after the start time).

We expand the response time analysis of tasks with preemp-
tion thresholds from [5], considering the overhead of restarting.
In the following, Si,k and Fi,k represent the worst case start
time and finish time of job τi,k. And, the arrival time of τi,k is
(k− 1)Ti. The worst-case response time of task τi is given by:

Ri = max
k∈[1,Ki]

{
max{F si,k, F

f
i,k} − (k − 1)Ti

}
(18)

Here, Ki can be obtained from Equation 4 by using
max(Opt,fi ,Opt,si) instead of Onpi . A task τi can be blocked
only by lower priority tasks that cannot be preempted by it,
that is:

Bi = max
j
{Cj | πj < πi ≤ λj} (19)

To compute finish time, Si,k is computed iteratively using the
following equation [5]:

S
(q)
i,k = Bi + (k− 1)Ci +

∑
j∈hp(πi)

(
1+

⌊
S
(q−1)
i,k

Tj

⌋)
Cj +Opt,si

(20)
Once the job starts executing, only the tasks with higher priority
than λi can preempt it. Hence, the Fi,k can be derived from the
following:

F
(q)
i,k = Si,k + Ci+∑
j∈hp(λi)

(⌈
F

(q−1)
i,k

Tj

⌉
−
(
1 +

⌊
Si,k
Tj

⌋))
Cj +Opt,fi (21)

Task set T is considered RBR-Feasible if ∀τi ∈ T , Ri ≤ Ti.
RBR-Feasibility of a task set depends on the choice of λis for

the tasks. In this paper, we use a genetic algorithm to find a set

of preemption thresholds to achieve RBR-Feasibility of the task-
set. Although this algorithm can be further improved to find the
optimal threshold assignments, the proposed genetic algorithm
achieves acceptable performance, as we show in Section VII.

VII. EVALUATION

In this section, we compare and evaluate the four fault-
tolerant scheduling strategies discussed in this paper. In order to
evaluate the practical feasibility of our approach, we have also
performed a preliminary proof-of-concept implementation on
commercial hardware (i.MX7D platform) for an actual 3 degree-
of-freedom helicopter. We tested logical faults, application
faults and system-level faults and demonstrated that the physical
system remained within the admissible region. Due to space
constraints, we omit the description and evaluation of our
implementation and refer to [14] for additional details.

(a) Fully preemptive (b) Fully non-preemptive

(c) Non-preemptive ending intervals. (d) Preemption thresholds.

Fig. 7: Minimum Period: 10, Maximum Period: 1000

A. Evaluating Performance of Scheduling Schemes
In this section, we evaluate the performance of four fault-

tolerant scheduling schemes that are discussed in this paper.
For each data point in the experiments, 500 task sets with
the specified utilization and number of tasks are generated.
Then, RBR-feasibility of the task sets are evaluated under four
discussed schemes; fully preemptive, fully non-preemptive, non-
preemptive ending intervals, and preemption thresholds. In order
to evaluate performance of the scheduling schemes, all the tasks
in the analysis are assumed to be part of the critical workload.
Priorities of the tasks are assigned according to the periods, so
a task with shorter period has a higher priority.

The experiments are performed with two sets of parameters
for the periods of the task sets. In the first set of experi-
ments (Figure 7), task sets are generated with periods in the
range of 10 to 1000 time units. In the second set (Figure 8),
tasks have a period in the range of 900 to 1000 time units. As
a result, tasks in the first experiment have more diverse set of
periods than the second one.

As shown in Figure 7(a) and 8(a), all the task sets with
utilization less than 50% are RBR-feasible under preemptive
scheduling. This observation is consistent with the results

(a) Fully preemptive (b) Fully non-preemptive

(c) Non-preemptive ending intervals. (d) Preemption thresholds.

Fig. 8: Minimum Period: 900, Maximum Period: 1000

of [15] which considers preemptive task sets under rate
monotonic scheduling with a recovery strategy similar to
ours (re-executing all the unfinished tasks), and shows that all
the task sets with utilization under 50% are schedulable.

Moreover, a comparison between Figure 7(a) and 8(a) reveals
that fully preemptive setting performs better when tasks in the
task set have diverse rates. To understand this effect, we must
notice that the longest preemption chain for a task in preemptive
setting, consists of the execution time of all the tasks with a
higher priority. Therefore, under this scheduling strategy, tasks
with low priority are the bottleneck for RBR-feasibility analysis.
When the diversity of the periods is increased, lower priority
tasks, on average, have much longer periods. As a result, they
have a larger slack to tolerate the overhead of restarts compared
to the lower priority tasks in task sets with less diverse periods.
Hence, more task sets are RBR-feasible when a larger range of
periods is considered.

On the contrary, when tasks have more diverse periods, non-
preemptive setting performs worse (Figure 7(b) and 8(b)). This
is because, with diverse periods, tasks with shorter periods (and
higher priorities) experience longer blocking times due to low
priority tasks with long execution times.

As the figures show, scheduling with preemption thresholds
and non-preemptive intervals in both experiments yield better
performance than preemptive and non-preemptive schemes. This
effect is expected because the flexibility of these schemes
allows them to decrease the overhead of restarts by increasing
the non-preemptive regions, or by increasing the preemption
thresholds while maintaining the feasibility of the task sets.
Tasks under these disciplines exhibit less blocking and lower
restart overhead.

Preemption thresholds and non-preemptive endings in general
demonstrate comparable performance. However, in task sets
with very small number of tasks (2-10 task), scheduling using
non-preemptive ending intervals performs slightly better than
preemption thresholds. This is due to the fact that, with small
number of tasks, the granularity of the latter approach is limited
because few choices can be made on the tasks’ preemption
thresholds. Whereas, the length of non-preemptive intervals can

be selected with a finer granularity and is not impacted by the
number of tasks.

VIII. RELATED WORK

Most of the previous work on Simplex Architecture [2]–
[4], [16], [17] has focused on design of the switching logic
of DM or the SC, assuming that the underlying RTOS, libraries
and middle-ware will correctly execute the SC and DM. Often
however, these underlying software layers are unverified and
may contain bugs. Unfortunately, Simplex-based systems are
not guaranteed to behave correctly in presence of system-
level faults. System-Level Simplex and its variants [18]–[20]
run SC and DM as bare-metal applications on an isolated,
dedicated hardware unit. By doing so, the critical components
are protected from the faults in the OS or middle-ware of the
complex subsystem. However, exercising this design on most
multi-core platforms is challenging. The majority of commercial
multi-core platforms are not designed to achieve strong inter-
core fault isolation due to the high-degree of hardware resource
sharing. For instance, a fault occurring in a core with the
highest privilege level may compromise power and clock
configuration of the entire platform. To achieve full isolation and
independence, one has to utilize two separate boards/systems.
Our design enables the system to safely tolerate and recover
from application-level and system-level faults that cause silent
failures in SC and DM without utilizing additional hardware.

The notion of restarting as a means of recovery from faults
and improving system availability was previously studied in
the literature. Most of the previous work, however, target
traditional non-safety-critical computing systems such as servers
and switches. Authors in [21] introduce recursively restartable
systems as a design paradigm for highly available systems.
Earlier literature [22], [23] illustrates the concept of micro-
reboot which consists of having fine-grain rebootable compo-
nents and trying to restart them from the smallest component to
the biggest one in the presence of faults. The works in [24]–[26]
focus on failure and fault modeling and try to find an optimal
rejuvenation strategy for various non safety-critical systems.

In the context of safety-critical CPS, authors in [27] propose
the procedures to design a base controller that enables the
entire computing system to be safely restarted at run-time. Base
Controller keeps the system inside a subset of safety region
by updating the actuator input at least once after every system
restart. In [19], which is variation of System-Level Simplex,
authors propose that the complex subsystem can be restarted
upon the occurrence of faults. In this design, safe restarting is
possible because the back up controller runs on a dedicated
processing unit and is not impacted by the restarts in the
complex subsystem.

One way to achieve fault-tolerance in real-time systems is
to use time redundancy. Using time redundancy, whenever a
fault leads to an error, and the error is detected, the faulty
task is either re-executed or a different logic (recovery block)
is executed to recover from the error. It is necessary that
such recovery strategy does not cause any deadline misses in
the task set. Fault tolerant scheduling has been extensively
studied in the literature. Hereby we briefly survey those works
that are more closely related. A feasibility check algorithm
under multiple faults, assuming EDF scheduling for aperiodic
preemptive tasks is proposed in [28]. An exact schedulability
tests using checkpointing for task sets under fully preemptive
model and transient fault that affects one task is proposed
in [29]. This analysis is further extended in [30] for the case
of multiple faults as well as for the case where the priority of
a critical task’s recovery block is increased. In [31], authors
propose the exact feasibility test for fixed-priority scheduling

of a periodic task set to tolerate multiple transient faults on
uniprocessor. In [32] an approach is presented to schedule under
fixed priority-driven preemptive scheduling at least one of the
two versions of the task; simple version with reliable timing
or complex version with potentially faulty. Authors in [15]
consider a similar fault model to ours, where the recovery action
is to re-execute all the partially executed tasks at the instant of
the fault detection i.e., executing task and all the preempted
tasks. This work only considers preemptive task sets under rate
monotonic and shows that single faults with a minimum inter-
arrival time of largest period in the task set can be recovered
if the processor utilization is less than or equal to 50%. In
[33], the authors investigate the feasibility of task sets under
fault bursts with preemptive scheduling. Similar to our work,
the recovery action is to re-execute the faulty job along with
all the partially completed (preempted) jobs at the time of fault
detection. Most of these works are only applicable to transient
faults (e.g., faults that occur due to radiation or short-lived HW
malfunctions) that impact the task and do not consider faults
affecting the underlying system. Additionally, most of these
works assume that an online fault detection or acceptance test
mechanism exists. While this assumption is valid for detecting
transient faults or timing faults, detecting complex system-level
faults or logical faults is non-trivial. Additionally, to the best
of our knowledge, our paper is the first one to provide the
sufficient feasibility condition in the presence of faults under the
preemption threshold model and task sets with non-preemptive
ending intervals.

IX. CONCLUSION

Restarting is considered a reliable way to recover traditional
computing systems from complex software faults. However,
restarting safety-critical CPS is challenging. In this work we
propose a restart-based fault-tolerance approach and analyze
feasibility conditions under various schedulability schemes. We
analyze the performance of these strategies for various task sets.
This approach enables us to provide formal safety guarantees in
the presence of software faults in the application-layer as well as
system-layer faults utilizing only one commercial off-the-shelf
processor.

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant numbers CNS-1302563 and CNS-1646383. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the NSF and other sponsors.

REFERENCES

[1] S. M. Sulaman, A. Orucevic-Alagic, M. Borg, K. Wnuk, M. Höst, and
J. L. de la Vara, “Development of safety-critical software systems using
open source software–a systematic map,” in 2014 40th EUROMICRO
Conference on Software Engineering and Advanced Applications. IEEE,
2014, pp. 17–24.

[2] L. Sha, “Dependable system upgrade,” in Real-Time Systems Symposium,
1998. Proceedings., The 19th IEEE. IEEE, 1998, pp. 440–448.

[3] L. Sha, “Using simplicity to control complexity.” IEEE Software, 2001.
[4] L. Sha, R. Rajkumar, and M. Gagliardi, “Evolving dependable real-time

systems,” in Aerospace Applications Conference, 1996. Proceedings., 1996
IEEE, vol. 1. IEEE, 1996, pp. 335–346.

[5] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemption
threshold,” in Real-Time Computing Systems and Applications, 1999.
RTCSA’99. Sixth International Conference on. IEEE, 1999.

[6] S. Baruah, “The limited-preemption uniprocessor scheduling of sporadic
task systems,” in 17th Euromicro Conference on Real-Time Systems
(ECRTS’05), July 2005, pp. 137–144.

[7] D. Seto and L. Sha, “A case study on analytical analysis of the inverted
pendulum real-time control system,” DTIC Document, Tech. Rep., 1999.

[8] D. Seto, E. Ferreira, and T. F. Marz, “Case study: Development of a
baseline controller for automatic landing of an f-16 aircraft using linear
matrix inequalities (lmis),” DTIC Document, Tech. Rep., 2000.

[9] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha, “Real-time reachability
for verified simplex design,” in Real-Time Systems Symposium (RTSS),
2014 IEEE. IEEE, 2014, pp. 138–148.

[10] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[11] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[12] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh, “Worst-case response
time analysis of real-time tasks under fixed-priority scheduling with
deferred preemption revisited,” in 19th Euromicro Conference on Real-
Time Systems (ECRTS’07), July 2007, pp. 269–279.

[13] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling
for real-time systems. a survey,” IEEE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 3–15, Feb 2013.

[14] F. Abdi, R. Mancuso, R. Tabish, and M. Caccamo, “Achieving
system-level fault-tolerance with controlled resets,” University of Illinois
at Urbana-Champaign, Tech. Rep., April 2017. [Online]. Available:
http://rtsl-edge.cs.illinois.edu/reset-based/reset sched.pdf

[15] M. Pandya and M. Malek, “Minimum achievable utilization for fault-
tolerant processing of periodic tasks,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1102–1112, Oct 1998.

[16] D. Seto and L. Sha, “An engineering method for safety region develop-
ment,” 1999.

[17] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. Kumar, “The
simplex reference model: Limiting fault-propagation due to unreliable
components in cyber-physical system architectures,” in Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE International. IEEE, 2007.

[18] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha,
“The system-level simplex architecture for improved real-time embedded
system safety,” in Real-Time and Embedded Technology and Applications
Symposium, 2009. RTAS 2009. 15th IEEE. IEEE, 2009, pp. 99–107.

[19] F. Abdi, R. Mancuso, S. Bak, O. Dantsker, and M. Caccamo, “Reset-
based recovery for real-time cyber-physical systems with temporal safety
constraints,” in IEEE 21st Conference on Emerging Technologies Factory
Automation (ETFA 2016), 2016.

[20] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3a:
Secure system simplex architecture for enhanced security and robustness
of cyber-physical systems,” in Proceedings of the 2nd ACM international
conference on High confidence networked systems. ACM, 2013.

[21] G. Candea and A. Fox, “Recursive restartability: Turning the reboot
sledgehammer into a scalpel,” in Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on. IEEE, 2001, pp. 125–130.

[22] G. Candea and A. Fox, “Crash-only software,” in HotOS IX: The 9th
Workshop on Hot Topics in Operating Systems, 2003, pp. 67–72.

[23] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot- a technique for cheap recovery,” in Proceedings of
the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, ser. OSDI’04, 2004, pp. 3–3.

[24] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for software
rejuvenation,” Dependable and Secure Computing, IEEE Transactions on,
vol. 2, no. 2, pp. 124–137, 2005.

[25] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, “Analysis of
software rejuvenation using markov regenerative stochastic petri net,” in
Software Reliability Engineering, 1995. Proceedings., Sixth International
Symposium on. IEEE, 1995, pp. 180–187.

[26] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software
rejuvenation: Analysis, module and applications,” in Fault-Tolerant
Computing, 1995. FTCS-25. Digest of Papers., Twenty-Fifth International
Symposium on. IEEE, 1995, pp. 381–390.

[27] F. Abdi, R. Tabish, M. Rungger, M. Zamani, and M. Caccamo,
“Application and system-level software fault tolerance through full system
restarts,” in In Proceedings of the 8th ACM/IEEE International Conference
on Cyber-Physical Systems. IEEE, 2017.

[28] F. Liberato, R. Melhem, and D. Mosse, “Tolerance to multiple transient
faults for aperiodic tasks in hard real-time systems,” IEEE Transactions
on Computers, vol. 49, no. 9, pp. 906–914, Sep 2000.

[29] S. Punnekkat, A. Burns, and R. Davis, “Analysis of checkpointing for
real-time systems,” Real-Time Systems, vol. 20, no. 1, pp. 83–102, 2001.

[30] G. Lima and A. Burns, Scheduling Fixed-Priority Hard Real-Time Tasks
in the Presence of Faults. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 154–173.

[31] R. M. Pathan and J. Jonsson, “Exact fault-tolerant feasibility analysis of
fixed-priority real-time tasks,” in 2010 IEEE 16th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications,
Aug 2010, pp. 265–274.

[32] C.-C. Han, K. G. Shin, and J. Wu, “A fault-tolerant scheduling
algorithm for real-time periodic tasks with possible software faults,” IEEE
Transactions on Computers, vol. 52, no. 3, pp. 362–372, March 2003.

[33] M. A. Haque, H. Aydin, and D. Zhu, “Real-time scheduling under fault
bursts with multiple recovery strategy,” in 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), April 2014.

